Analisis Faktor-Faktor Kunci Leverage Point dalam Merancang Rencana Implementasi Perubahan Organisasi yang Berhasil
Sari
Implementasi perubahan organisasi adalah tantangan yang kompleks dan seringkali dihadapi dengan berbagai hambatan. Dalam menghadapi dinamika ini, pengidentifikasian faktor-faktor kunci yang menjadi leverage point dapat membantu merancang rencana implementasi perubahan yang lebih efektif. Studi ini bertujuan untuk menganalisis faktor-faktor kunci yang berperan sebagai leverage point dalam merancang rencana implementasi perubahan organisasi yang berhasil. Metode analisis kualitatif digunakan dalam penelitian ini, dengan fokus pada tinjauan literature. Hasil analisis menunjukkan beberapa faktor kunci yang menjadi leverage point dalam implementasi perubahan organisasi: kepemimpinan visioner, partisipasi karyawan, komunikasi efektif, kultur organisasi yang mendukung, pengelolaan perubahan. Analisis ini juga mengidentifikasi bahwa keberhasilan implementasi perubahan tidak hanya bergantung pada faktor-faktor internal organisasi, tetapi juga pada kemampuan organisasi untuk beradaptasi dengan perubahan lingkungan eksternal yang dinamis. Studi ini memberikan wawasan penting bagi praktisi dan pemimpin organisasi dalam merancang rencana implementasi perubahan yang lebih efektif. Dengan memperhatikan faktor-faktor kunci sebagai leverage point, organisasi dapat meningkatkan kesuksesan dan keberlanjutan dari upaya perubahan mereka.
Kata kunci: faktor kunci, implementasi perubahan, leverage points
Teks Lengkap:
PDFReferensi
Akter, A., Zafir, E. I., Dana, N. H., Joysoyal, R., Sarker, S. K., Li, L., Muyeen, S. M., Das, S. K., & Kamwa, I. (2024). A review on microgrid optimization with meta-heuristic techniques: Scopes, trends and recommendation. Energy Strategy Reviews, 51(March 2023). https://doi.org/10.1016/j.esr.2024.101298
Aungkulanon, P., Hirunwat, A., Atthirawong, W., Phimsing, K., Chanhom, S., & Luangpaiboon, P. (2024). Optimizing maintenance responsibility distribution in real estate management: A complexity-driven approach for sustainable efficiency. Journal of Open Innovation: Technology, Market, and Complexity, 10(1), 100239. https://doi.org/10.1016/j.joitmc.2024.100239
Avordeh, T. K., & Gyamfi, S. (2024). Optimizing residential demand response in Ghana through iterative techniques and home appliance trend analysis. Heliyon, 10(4), e25807. https://doi.org/10.1016/j.heliyon.2024.e25807
Boutahri, Y., & Tilioua, A. (2024). Machine learning-based predictive model for thermal comfort and energy optimization in smart buildings. Results in Engineering, 22(January), 102148. https://doi.org/10.1016/j.rineng.2024.102148
Chan, K. M. A., Boyd, D. R., Gould, R. K., Jetzkowitz, J., Liu, J., Muraca, B., Naidoo, R., Olmsted, P., Satterfield, T., Selomane, O., Singh, G. G., Sumaila, R., Ngo, H. T., Boedhihartono, A. K., Agard, J., de Aguiar, A. P. D., Armenteras, D., Balint, L., Barrington-Leigh, C., … Brondízio, E. S. (2020). Levers and leverage points for pathways to sustainability. People and Nature, 2(3), 693–717. https://doi.org/10.1002/pan3.10124
Chidera Victoria Ibeh, Onyeka Franca Asuzu, Temidayo Olorunsogo, Oluwafunmi Adijat Elufioye, Ndubuisi Leonard Nduubuisi, & Andrew Ifesinachi Daraojimba. (2024). Business analytics and decision science: A review of techniques in strategic business decision making. World Journal of Advanced Research and Reviews, 21(2), 1761–1769. https://doi.org/10.30574/wjarr.2024.21.2.0247
Cui, T., Du, N., Yang, X., & Ding, S. (2024). Multi-period portfolio optimization using a deep reinforcement learning hyper-heuristic approach. Technological Forecasting and Social Change, 198(March 2023). https://doi.org/10.1016/j.techfore.2023.122944
Dash, A., Sethy, P. K., & Behera, S. K. (2023). Maize disease identification based on optimized support vector machine using deep feature of DenseNet201. Journal of Agriculture and Food Research, 14(August), 100824. https://doi.org/10.1016/j.jafr.2023.100824
De Grossi, F., & Circi, C. (2023). Nonlinear model predictive control leveraging quantum-inspired optimization in the three body problem with uncertainty. Acta Astronautica, 205(January), 68–79. https://doi.org/10.1016/j.actaastro.2023.01.028
Farhadi, F., Wang, S., Palacin, R., & Blythe, P. (2023). Data-driven multi-objective optimization for electric vehicle charging infrastructure. IScience, 26(10), 107737. https://doi.org/10.1016/j.isci.2023.107737
Gholami, M., Muyeen, S. M., & Lin, S. (2024). Optimizing microgrid efficiency: Coordinating commercial and residential demand patterns with shared battery energy storage. Journal of Energy Storage, 88(December 2023), 111485. https://doi.org/10.1016/j.est.2024.111485
Hauswirth, A., He, Z., Bolognani, S., Hug, G., & Dörfler, F. (2021). Optimization Algorithms as Robust Feedback Controllers. Annual Reviews in Control, 57(December 2023), 100941. https://doi.org/10.1016/j.arcontrol.2024.100941
Hu, H., Gong, S., & Taheri, B. (2024). Energy demand forecasting using convolutional neural network and modified war strategy optimization algorithm. Heliyon, 10(6), e27353. https://doi.org/10.1016/j.heliyon.2024.e27353
Jameel Al-Kamil, S., & Szabolcsi, R. (2024). Optimizing path planning in mobile robot systems using motion capture technology. Results in Engineering, 22(March). https://doi.org/10.1016/j.rineng.2024.102043
Kasper, L., Schwarzmayr, P., Birkelbach, F., Javernik, F., Schwaiger, M., & Hofmann, R. (2024). A digital twin-based adaptive optimization approach applied to waste heat recovery in green steel production: Development and experimental investigation. Applied Energy, 353(PB), 122192. https://doi.org/10.1016/j.apenergy.2023.122192
Lal, A., Ashworth, H. C., Dada, S., Hoemeke, L., & Tambo, E. (2022). Optimizing Pandemic Preparedness and Response Through Health Information Systems: Lessons Learned From Ebola to COVID-19. Disaster Medicine and Public Health Preparedness, 16(1), 333–340. https://doi.org/10.1017/dmp.2020.361
Lyu, D., Yang, F., Liu, B., & Gustafson, S. (2019). SDRL: Interpretable and data-efficient deep reinforcement learning leveraging symbolic planning. Electronic Proceedings in Theoretical Computer Science, EPTCS, 306.
Marwan, M., AlShahwan, F., Afoudi, Y., Ait Temghart, A., & Lazaar, M. (2023). Leveraging artificial intelligence and mutual authentication to optimize content caching in edge data centers. Journal of King Saud University - Computer and Information Sciences, 35(9), 101742. https://doi.org/10.1016/j.jksuci.2023.101742
Murifal, B. (2021). Strategi Manajemen Mengoptimalkan Kinerja dengan Konsep Beyond Budgeting. Ekonomis: Journal of Economics and Business, 5(1), 245. https://doi.org/10.33087/ekonomis.v5i1.318
Noordin, N. H., Eu, P. S., & Ibrahim, Z. (2023). FPGA Implementation of Metaheuristic Optimization Algorithm. E-Prime - Advances in Electrical Engineering, Electronics and Energy, 6(July), 100377. https://doi.org/10.1016/j.prime.2023.100377
Olorunyomi Stephen Joel, Adedoyin Tolulope Oyewole, Olusegun Gbenga Odunaiya, & Oluwatobi Timothy Soyombo. (2024). Leveraging Artificial Intelligence for Enhanced Supply Chain Optimization: a Comprehensive Review of Current Practices and Future Potentials. International Journal of Management & Entrepreneurship Research, 6(3), 707–721. https://doi.org/10.51594/ijmer.v6i3.882
Rositch, A. F., Unger-Saldaña, K., Deboer, R. J., Ng’ang’a, A., & Weiner, B. J. (2020). The Role of Dissemination and Implementation Science in Global Breast Cancer Control Programs: Frameworks, Methods, and Examples. Cancer, 126(S10), 2394–2404. https://doi.org/10.1002/cncr.32877
Saha, C., Jana, D. K., & Duary, A. (2023). Enhancing production inventory management for imperfect items using fuzzy optimization strategies and Differential Evolution (DE) algorithms. Franklin Open, 5(June), 100051. https://doi.org/10.1016/j.fraope.2023.100051
Science, E., Journal, T., Publishers, F. E., Odejide, O. A., Edunjobi, T. E., Researcher, I., Researcher, I., & Ontario, L. (2024). AI IN PROJECT MANAGEMENT : EXPLORING THEORETICAL MODELS FOR DECISION-MAKING AND. 5(3), 1072–1085. https://doi.org/10.51594/estj/v5i3.959
Setyabudi, T. G., & Iswara, U. S. (2019). Perencanaan Laba Menggunakan Pendekatan Analisis Cost Volume Profit. Prosiding Seminar Nasional Dan Call for Papers UNISBANK (Sendi_U) Ke-5 Tahun 2019, 2018, 978–979.
Shafie, M. R., Khosravi, H., Farhadpour, S., Das, S., & Ahmed, I. (2024). A cluster-based human resources analytics for predicting employee turnover using optimized Artificial Neural Networks and data augmentation. Decision Analytics Journal, 11(December 2023), 100461. https://doi.org/10.1016/j.dajour.2024.100461
Tao, B., & Kim, J. H. (2024). Mobile robot path planning based on bi-population particle swarm optimization with random perturbation strategy. Journal of King Saud University - Computer and Information Sciences, 36(2), 101974. https://doi.org/10.1016/j.jksuci.2024.101974
Thantharate, P., Thantharate, A., & Kulkarni, A. (2024). GREENSKY: A fair energy-aware optimization model for UAVs in next-generation wireless networks. Green Energy and Intelligent Transportation, 3(1), 100130. https://doi.org/10.1016/j.geits.2023.100130
Triana, D. H., Vitriana, N., & Suriyanti, L. H. (2020). Penerapan Analisis Cost-Volume-Profit Sebagai Alat Perencanaan Laba UD Sukma Jaya: Efektif atau Semu? Muhammadiyah Riau Accounting and Business Journal, 1(2), 054–062. https://doi.org/10.37859/mrabj.v1i2.1915
Xiong, W., Zhu, D., Li, R., Yao, Y., Zhou, C., & Cheng, S. (2024). An effective method for global optimization – Improved slime mould algorithm combine multiple strategies. Egyptian Informatics Journal, 25(January), 100442. https://doi.org/10.1016/j.eij.2024.100442
Yaiprasert, C., & Hidayanto, A. N. (2024). AI-powered ensemble machine learning to optimize cost strategies in logistics business. International Journal of Information Management Data Insights, 4(1), 100209. https://doi.org/10.1016/j.jjimei.2023.100209
Yanto, M. (2020). Penerapan Cost – Volume – Profit (Cvp) Sebagai Dasar Perencanaan Laba Pada Cv. Usaha Bersama Tanjungpinang. Jurnal Dimensi, 9(2), 369–386. https://doi.org/10.33373/dms.v9i2.2547
Zhou, X., Xue, S., Du, H., & Ma, Z. (2023). Optimization of building demand flexibility using reinforcement learning and rule-based expert systems. Applied Energy, 350(May), 121792. https://doi.org/10.1016/j.apenergy.2023.121792
DOI: https://doi.org/10.37531/yum.v7i1.6650
Refbacks
- Saat ini tidak ada refbacks.

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional