AI-Powered Performance Appraisal: Balancing Automation with Human Judgment in Performance Management Systems
Sari
The integration of artificial intelligence (AI) into performance appraisal systems is transforming how organizations assess and manage employee performance. This study presents a literature-based review exploring the dynamic interplay between AI-driven automation and human judgment in performance management. Five key themes emerge from the review: efficiency and standardization, bias and fairness, human oversight and trust, ethical and psychological impacts, and the need for human-AI collaboration. Through real-world cases, including examples from Indonesian companies such as Gojek and Tokopedia, the study illustrates both the benefits and limitations of AI applications in appraisal systems. The findings highlight the importance of maintaining human involvement in decision-making to ensure fairness, contextual understanding, and ethical accountability. The paper concludes with recommendations for hybrid models that combine algorithmic insights with managerial discretion, advocating for transparent, fair, and adaptive systems of performance evaluation.
Keywords: Artificial Intelligence (AI); Performance Appraisal; Evaluation; HR Technology
Teks Lengkap:
PDFReferensi
Ajunwa, I., Crawford, K., & Schultz, J. (2017). Limitless Worker Surveillance. California Law Review, 105(3), 735–776.
Brock, J. M., & von Wangenheim, F. (2019). Demystifying AI in HRM. Journal of Business Research, 119.
Brougham, D., & Haar, J. (2018). Smart technology, artificial intelligence, robotics, and algorithms (STARA): Employees’ perceptions of our future workplace. Journal of Management & Organization, 24(2), 239–257. https://doi.org/10.1017/jmo.2016.55
Brynjolfsson, E., & McAfee, A. (2017). Machine, Platform, Crowd: Harnessing Our Digital Future. W.W. Norton & Company.
Buckingham, M., & Goodall, A. (2015). Reinventing Performance Management. Harvard Business Review.
Dastin, J. (2018). Amazon scraps secret AI recruiting tool that showed bias against women. Reuters. https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G
Dastin, J. (2019). How IBM Uses AI to Enhance Employee Experience. Reuters Technology.
DeNisi, A. S., & Murphy, K. R. (2017). Performance appraisal and performance management: 100 years of progress? Journal of Applied Psychology, 102(3), 421–433. https://doi.org/10.1037/apl0000085
Floridi, L., Cowls, J., Beltrametti, M. et al.. (2018). AI4People—An Ethical Framework for a Good AI Society. Minds and Machines, 28(4), 689–707.
Gojek Tech Blog. (2021). Responsible AI: Building ethical AI systems. https://blog.gojek.io
Guenole, N., Ferrar, J., & Feinzig, S. (2017). The Power of People: Learn How Successful Organizations Use Workforce Analytics to Improve Business Performance. Pearson.
Handayani, D., & Sutrisno, B. (2021). Evaluasi dan Pengawasan Human-AI dalam Penilaian Kinerja di Perbankan. Jurnal Manajemen Bisnis Indonesia, 12(3).
Hofstede Insights. (2023). Country Comparison: Indonesia. https://www.hofstede-insights.com/country-comparison/indonesia/
Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business Horizons, 61(4), 577–586. https://doi.org/10.1016/j.bushor.2018.03.007
Jatobá, A., Rocha, Á., Vasconcelos, J. B., & Costa, C. J. (2021). Artificial intelligence in performance appraisal: A systematic literature review. Technological Forecasting and Social Change, 173, 121123. https://doi.org/10.1016/j.techfore.2021.121123
Lindebaum, D., Vesa, M., & den Hond, F. (2020). Insights from “The Machine Stops” to better understand algorithmic control. Academy of Management Review, 45(2), 247–263. https://doi.org/10.5465/amr.2018.0185
Nuswantoro, H. (2020). Evaluasi Kinerja Mitra Gojek dalam Perspektif Algoritma. Jurnal Komunikasi.
Prasetyo, H., & Raharjo, B. (2020). Pemanfaatan AI dalam Sistem HR Telkom Indonesia. Telkom HR Journal, 8(1).
Puspitasari, S., Harahap, H., & Susilo, B. (2021). Implementasi Kecerdasan Buatan dalam Proses Talent Management di Industri Perbankan Indonesia. Jurnal Sistem Informasi, 17(2).
Putri, A. D. (2021). Penerapan Analisis Data Karyawan di Tokopedia. HR Technology Indonesia.
Raisch, S., & Krakowski, S. (2021). Artificial intelligence and management: The automation–augmentation paradox. Academy of Management Review, 46(1), 192–210. https://doi.org/10.5465/amr.2018.0072
Saurabh, S., & Dey, K. (2021). Artificial intelligence in human resource management: A future research agenda. Benchmarking: An International Journal, 28(5), 1710–1732. https://doi.org/10.1108/BIJ-03-2020-0124
Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039
Tambe, P., Cappelli, P., & Yakubovich, V. (2019). Artificial intelligence in human resources management: Challenges and a path forward. California Management Review, 61(4), 15–42. https://doi.org/10.1177/0008125619867910
Tempo HR Insight. (2022). Respons Bukalapak terhadap Feedback Evaluasi Otomatis.
UU Perlindungan Data Pribadi (2022), Republik Indonesia.
Wang, D., Jamal, M., & McCausland, T. (2020). Trust and transparency in algorithmic HR systems: Exploring ethical implications. Journal of Business Ethics, 167(1), 147–164.
Wibowo, R., & Halim, T. (2023). Dual-layer Evaluation in AI-Driven HR Systems: A Case from Telkomsel. Jurnal Teknologi Informasi & Manajemen SDM, 11(2).
Xiao, Y., & Watson, M. (2019). Guidance on conducting a systematic literature review. Journal of Planning Education and Research, 39(1), 93–112. https://doi.org/10.1177/0739456X17723971
Yuliana, Y., & Wijayanto, A. (2020). Digitalisasi Sistem Evaluasi Kinerja di Instansi Pemerintah: Peluang dan Tantangan. Jurnal Ilmu Administrasi Negara.
DOI: https://doi.org/10.37531/yum.v8i2.9164
Refbacks
- Saat ini tidak ada refbacks.

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional