LDA-Topic Modeling: Menggunakan Ulasan Pengguna Untuk Meningkatkan User Experience (Studi pada PeduliLindungi)
Abstract
Kata Kunci: Ulasan Pengguna, Text Mining, Topic Modeling, Pengalaman Pengguna.
Full Text:
Download PDFReferences
Kemenkes RI. (2020). Pertanyaan dan Jawaban Terkait Coronavirus Disease 2019 (COVID-19). World Health Organization, 2019, 1–9.
CNN. (2020). Virus Corona Masuk Indonesia, Netizen Serukan Jangan Panik. cnnindonesia.com.
Keputusan Menteri Komunikasi dan Informatika Republik Indonesia Nomor 171 Tahun 2020. (2020)
Covid19.go.id. (2021). Aplikasi PeduliLindungi Optimalkan Pengendalian Pandemi - Berita Terkini | Covid19.go.id https://covid19.go.id/p/berita/aplikasi-pedulilindungi-optimalkan-pengendalian-pandemi
Hudaya, C. S., Fakhrurroja, H., & Alamsyah, A. (2019). Analisis Persepsi Konsumen Terhadap Brand Go-Jek Pada Media Sosial Twitter Menggunakan Metode Sentiment Analysis Dan Topic Modelling. Jurnal Mitra Manajemen, 3(6), 664–673. https://doi.org/10.52160/ejmm.v3i6.244
Hootsuite, W. A. S. and. (2021). Digital in Indonesia: All the Statistics You Need in 2021 — DataReportal – Global Digital Insights. https://datareportal.com/reports/digital-2021-indonesia
Khatoon, M., Aisha Banu, W., Zohra, A. A., & Chinthamani, S. (2019). Sentiment Analysis on Tweets. Advances in Intelligent Systems and Computing, 731, 717–724. https://doi.org/10.1007/978-981-10-8848-3_70
Zhang, A. J., Albrecht, L., & Scott, S. D. (2018). Using Twitter for Data Collection With Health-Care Consumers: A Scoping Review. Https://Doi.Org/10.1177/1609406917750782, 17(1). https://doi.org/10.1177/1609406917750782
Burhan, F. A. (2021). Warganet Keluhkan Aplikasi PeduliLindungi Eror. Katadata.Co.Id
Daniswari, D. (2021). PeduliLindungi Trending di Twitter: Netizen Senang dan Kecewa. Loh Kenapa? - Hallo Depok. Depok.Hallo.Id. PeduliLindungi Trending di Twitter: Netizen Senang dan Kecewa. Loh Kenapa? - Hallo Depok
Munthe, Rio Donaroe; Brata, Komang Candra ; Fanani, L. (2018). Tampilan Analisis User Experience Aplikasi Mobile Facebook (Studi Kasus pada Mahasiswa Universitas Brawijaya). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/1672/619
Wallach, D., Conrad, J., & Steimle, T. (2017). The UX Metrics Table: A Missing Artifact. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10288 LNCS, 507–517. https://doi.org/10.1007/978-3-319-58634-2_37
Yee, L. C., Grundy, J., Baggo, K. Von, Cain, A., & Vasa, R. (2018). Evaluating an open learner model visualisation prototype tool with user experience metrics. Proceedings - 25th Australasian Software Engineering Conference, ASWEC 2018, 51–60. https://doi.org/10.1109/ASWEC.2018.00015
Rodden, K., Hutchinson, H., & Fu, X. (2010). Measuring the user experience on a large scale: User-centered metrics for web applications. Conference on Human Factors in Computing Systems - Proceedings, 4, 2395–2398. https://doi.org/10.1145/1753326.1753687
Lachner, F., Fincke, F., & Butz, A. (2017). UX metrics: Deriving country-specific usage patterns of a website plug-in from web analytics. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10515 LNCS, 142–159. https://doi.org/10.1007/978-3-319-67687-6_11
Yang, C., Wu, L., Tan, K., Yu, C., Zhou, Y., Tao, Y., & Song, Y. (2021). Online user review analysis for product evaluation and improvement. Journal of Theoretical and Applied Electronic Commerce Research, 16(5), 1598–1611. https://doi.org/10.3390/jtaer16050090
Yang, B., Liu, Y., Liang, Y., & Tang, M. (2019). Exploiting user experience from online customer reviews for product design. International Journal of Information Management, 46(December 2018), 173–186. https://doi.org/10.1016/j.ijinfomgt.2018.12.006
Yang, C., Wu, L., Tan, K., Yu, C., Zhou, Y., Tao, Y., & Song, Y. (2021). Online user review analysis for product evaluation and improvement. Journal of Theoretical and Applied Electronic Commerce Research, 16(5), 1598–1611. https://doi.org/10.3390/jtaer16050090
Jelodar, H., Wang, Y., Yuan, C., Feng, · Xia, Jiang, · Xiahui, Li, Y., Liang Zhao, ·, Feng, X., & Jiang, X. (2018). Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey. Multimedia Tools and Applications, 78, 15169–15211. https://doi.org/10.1007/s11042-018-6894-4
Kalaichelavan, K., Malik, H., Husnu, N., & Sreenath, S. (2020). What Do People Complain About Drone Apps? A Large-Scale Empirical Study of Google Play Store Reviews. Procedia Computer Science, 170, 547–554. https://doi.org/10.1016/J.PROCS.2020.03.124
Zečević, M., Mijatović, D., Kos Koklič, M., Žabkar, V., & Gidaković, P. (2021). User Perspectives of Diet-Tracking Apps: Reviews Content Analysis and Topic Modeling. https://doi.org/10.2196/25160
Indrawati. (2015). Metode Penelitian Manajemen dan Bisnis Konvergensi Teknologi Komunikasi dan Informasi. Aditama.
Firmansyah, A. (2019). PERILAKU KONSUMEN (Sikap dan Pemasaran)
Jo, V. (2019). Introduction. In Seminars in Diagnostic Pathology (Vol. 36, Issue 2). https://doi.org/10.1053/j.semdp.2019.02.002
Pathan, A. F., & Prakash, C. (2021). Unsupervised Aspect Extraction Algorithm for opinion mining using topic modeling. Global Transitions Proceedings, 2(2), 492–499. https://doi.org/10.1016/J.GLTP.2021.08.005
Chen, L., Huang, X., Zhang, H., & Niu, B. (2020). Covid-19 Public Opinion Analysis Based on LDA Topic Modeling and Data Visualization. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12487 LNCS, 224–234. https://doi.org/10.1007/978-3-030-62460-6_20
Uysal, A. K., & Gunal, S. (2014). The impact of preprocessing on text classification. Information Processing and Management, 50(1), 104–112. https://doi.org/10.1016/j.ipm.2013.08.006
Alamsyah, A., Rochmah, W. Y., & Nugroho, D. D. A. (2019). Understanding Public Opinion towards New Sharing Economy Business Model Using Content Analysis. Proceedings of 2019 International Conference on Information Management and Technology, ICIMTech 2019, 1(August), 300– 304. https://doi.org/10.1109/ICIMTech.2019.8843779
Blair, S.J., Bi, Y. & Mulvenna, M.D. (2020). Aggregated topic models for increasing social media topic coherence. Applied Intelligence 50, 138–156. https://doi.org/10.1007/s10489-019-01438-z
Sharma, H. (2021). Topic Model Visualization using pyLDAvis. Towardsdatascience.com
Kapadia, S. (2019). Topic Modeling in Python: Latent Dirichlet Allocation (LDA). Towardsdatascience.com.
Tran, K. (2021). pyLDAvis: Topic Modelling Exploration Tool That Every NLP Data Scientist Should Know. Neptune.Ai.
Dieng, A. B., Ruiz, F. J. R., & Blei, D. M. (2020). Topic modeling in embedding spaces. Transactions of the Association for Computational Linguistics, 8, 439– 453. https://doi.org/10.1162/tacl_a_00325
DOI: https://doi.org/10.37531/sejaman.v6i1.4227
Refbacks
- There are currently no refbacks.