LDA-Topic Modeling: Menggunakan Ulasan Pengguna Untuk Meningkatkan User Experience (Studi pada PeduliLindungi)

Khansa Amaradiena, Tri Widarmanti

Abstract


Pemanfaatan aplikasi tracking COVID-19 PeduliLindungi sebagai salah satu upaya untuk menekan angka penyebaran virus semakin banyak digunakan. Dengan semakin banyak masyarakat yang menggunakan, maka muncul ulasan terkait pemanfaatan aplikasi pada media sosial, salah satunya Twitter. Penelitian bertujuan untuk mengetahui topik yang disebutkan dan topik yang paling sering dibicarakan oleh pengguna aplikasi PeduliLindungi berdasarkan data pada media sosial Twitter. Selain itu, tujuan lain dari penelitian ini untuk mengetahui topik muncul yang berkaitan dengan user experience. Topik terkait user experience tersebut kemudian dikelompokan berdasarkan UX HEART metrics. Penelitian menggunakan data UGC dari tweets pada Twitter dengan kata kunci “pedulilindungi”. Data diambil dalam rentan waktu 1 – 31 Desember 2021. Data kemudian dianalisis menggunakan metode LDA-Topic Modeling untuk mengetahui topik dan kata pada dokumen. Hasil penelitian menunjukan terdapat 9 topik yang disebutkan. Selain itu, topik yang paling sering dibicarakan terkait penggunaan aplikasi PeduliLindungi. Berdasarkan analisis UX HEART metrics dapat diketahui terdapat 4 metrics yaitu happiness, engagement, retention, dan task success. Diharapkan dari hasil penelitian dapat menjadi evaluasi bagi pengembang aplikasi untuk meningkatkan kualitas aplikasi, seperti mengurangi error, melakukan pembaharuan data vaksin secara cepat, dan menyebarkan informasi untuk pengguna tentang cara melakukan input tanggal saat log in atau saat melakukan klaim sertifikat vaksin.
Kata Kunci: Ulasan Pengguna, Text Mining, Topic Modeling, Pengalaman Pengguna.

Full Text:

Download PDF

References


Kemenkes RI. (2020). Pertanyaan dan Jawaban Terkait Coronavirus Disease 2019 (COVID-19). World Health Organization, 2019, 1–9.

CNN. (2020). Virus Corona Masuk Indonesia, Netizen Serukan Jangan Panik. cnnindonesia.com.

Keputusan Menteri Komunikasi dan Informatika Republik Indonesia Nomor 171 Tahun 2020. (2020)

Covid19.go.id. (2021). Aplikasi PeduliLindungi Optimalkan Pengendalian Pandemi - Berita Terkini | Covid19.go.id https://covid19.go.id/p/berita/aplikasi-pedulilindungi-optimalkan-pengendalian-pandemi

Hudaya, C. S., Fakhrurroja, H., & Alamsyah, A. (2019). Analisis Persepsi Konsumen Terhadap Brand Go-Jek Pada Media Sosial Twitter Menggunakan Metode Sentiment Analysis Dan Topic Modelling. Jurnal Mitra Manajemen, 3(6), 664–673. https://doi.org/10.52160/ejmm.v3i6.244

Hootsuite, W. A. S. and. (2021). Digital in Indonesia: All the Statistics You Need in 2021 — DataReportal – Global Digital Insights. https://datareportal.com/reports/digital-2021-indonesia

Khatoon, M., Aisha Banu, W., Zohra, A. A., & Chinthamani, S. (2019). Sentiment Analysis on Tweets. Advances in Intelligent Systems and Computing, 731, 717–724. https://doi.org/10.1007/978-981-10-8848-3_70

Zhang, A. J., Albrecht, L., & Scott, S. D. (2018). Using Twitter for Data Collection With Health-Care Consumers: A Scoping Review. Https://Doi.Org/10.1177/1609406917750782, 17(1). https://doi.org/10.1177/1609406917750782

Burhan, F. A. (2021). Warganet Keluhkan Aplikasi PeduliLindungi Eror. Katadata.Co.Id

Daniswari, D. (2021). PeduliLindungi Trending di Twitter: Netizen Senang dan Kecewa. Loh Kenapa? - Hallo Depok. Depok.Hallo.Id. PeduliLindungi Trending di Twitter: Netizen Senang dan Kecewa. Loh Kenapa? - Hallo Depok

Munthe, Rio Donaroe; Brata, Komang Candra ; Fanani, L. (2018). Tampilan Analisis User Experience Aplikasi Mobile Facebook (Studi Kasus pada Mahasiswa Universitas Brawijaya). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/1672/619

Wallach, D., Conrad, J., & Steimle, T. (2017). The UX Metrics Table: A Missing Artifact. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10288 LNCS, 507–517. https://doi.org/10.1007/978-3-319-58634-2_37

Yee, L. C., Grundy, J., Baggo, K. Von, Cain, A., & Vasa, R. (2018). Evaluating an open learner model visualisation prototype tool with user experience metrics. Proceedings - 25th Australasian Software Engineering Conference, ASWEC 2018, 51–60. https://doi.org/10.1109/ASWEC.2018.00015

Rodden, K., Hutchinson, H., & Fu, X. (2010). Measuring the user experience on a large scale: User-centered metrics for web applications. Conference on Human Factors in Computing Systems - Proceedings, 4, 2395–2398. https://doi.org/10.1145/1753326.1753687

Lachner, F., Fincke, F., & Butz, A. (2017). UX metrics: Deriving country-specific usage patterns of a website plug-in from web analytics. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10515 LNCS, 142–159. https://doi.org/10.1007/978-3-319-67687-6_11

Yang, C., Wu, L., Tan, K., Yu, C., Zhou, Y., Tao, Y., & Song, Y. (2021). Online user review analysis for product evaluation and improvement. Journal of Theoretical and Applied Electronic Commerce Research, 16(5), 1598–1611. https://doi.org/10.3390/jtaer16050090

Yang, B., Liu, Y., Liang, Y., & Tang, M. (2019). Exploiting user experience from online customer reviews for product design. International Journal of Information Management, 46(December 2018), 173–186. https://doi.org/10.1016/j.ijinfomgt.2018.12.006

Yang, C., Wu, L., Tan, K., Yu, C., Zhou, Y., Tao, Y., & Song, Y. (2021). Online user review analysis for product evaluation and improvement. Journal of Theoretical and Applied Electronic Commerce Research, 16(5), 1598–1611. https://doi.org/10.3390/jtaer16050090

Jelodar, H., Wang, Y., Yuan, C., Feng, · Xia, Jiang, · Xiahui, Li, Y., Liang Zhao, ·, Feng, X., & Jiang, X. (2018). Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey. Multimedia Tools and Applications, 78, 15169–15211. https://doi.org/10.1007/s11042-018-6894-4

Kalaichelavan, K., Malik, H., Husnu, N., & Sreenath, S. (2020). What Do People Complain About Drone Apps? A Large-Scale Empirical Study of Google Play Store Reviews. Procedia Computer Science, 170, 547–554. https://doi.org/10.1016/J.PROCS.2020.03.124

Zečević, M., Mijatović, D., Kos Koklič, M., Žabkar, V., & Gidaković, P. (2021). User Perspectives of Diet-Tracking Apps: Reviews Content Analysis and Topic Modeling. https://doi.org/10.2196/25160

Indrawati. (2015). Metode Penelitian Manajemen dan Bisnis Konvergensi Teknologi Komunikasi dan Informasi. Aditama.

Firmansyah, A. (2019). PERILAKU KONSUMEN (Sikap dan Pemasaran)

Jo, V. (2019). Introduction. In Seminars in Diagnostic Pathology (Vol. 36, Issue 2). https://doi.org/10.1053/j.semdp.2019.02.002

Pathan, A. F., & Prakash, C. (2021). Unsupervised Aspect Extraction Algorithm for opinion mining using topic modeling. Global Transitions Proceedings, 2(2), 492–499. https://doi.org/10.1016/J.GLTP.2021.08.005

Chen, L., Huang, X., Zhang, H., & Niu, B. (2020). Covid-19 Public Opinion Analysis Based on LDA Topic Modeling and Data Visualization. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12487 LNCS, 224–234. https://doi.org/10.1007/978-3-030-62460-6_20

Uysal, A. K., & Gunal, S. (2014). The impact of preprocessing on text classification. Information Processing and Management, 50(1), 104–112. https://doi.org/10.1016/j.ipm.2013.08.006

Alamsyah, A., Rochmah, W. Y., & Nugroho, D. D. A. (2019). Understanding Public Opinion towards New Sharing Economy Business Model Using Content Analysis. Proceedings of 2019 International Conference on Information Management and Technology, ICIMTech 2019, 1(August), 300– 304. https://doi.org/10.1109/ICIMTech.2019.8843779

Blair, S.J., Bi, Y. & Mulvenna, M.D. (2020). Aggregated topic models for increasing social media topic coherence. Applied Intelligence 50, 138–156. https://doi.org/10.1007/s10489-019-01438-z

Sharma, H. (2021). Topic Model Visualization using pyLDAvis. Towardsdatascience.com

Kapadia, S. (2019). Topic Modeling in Python: Latent Dirichlet Allocation (LDA). Towardsdatascience.com.

Tran, K. (2021). pyLDAvis: Topic Modelling Exploration Tool That Every NLP Data Scientist Should Know. Neptune.Ai.

Dieng, A. B., Ruiz, F. J. R., & Blei, D. M. (2020). Topic modeling in embedding spaces. Transactions of the Association for Computational Linguistics, 8, 439– 453. https://doi.org/10.1162/tacl_a_00325




DOI: https://doi.org/10.37531/sejaman.v6i1.4227

Refbacks

  • There are currently no refbacks.


Flag Counter

Creative Commons License

S E I K O : Journal of Management & Business is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
 
© All rights reserved 2018. S E I K O : Journal of Management & Business - ISSN (Print) : 2598-831X, ISSN (Online) : 2598-8301.
 

Web
Analytics